Type + realization link | h-Characteristic | Realization of h | sl(2)-module decomposition of the ambient Lie algebra \(\psi=\) the fundamental \(sl(2)\)-weight. | Centralizer dimension | Type of semisimple part of centralizer, if known | The square of the length of the weight dual to h. | Dynkin index | Minimal containing regular semisimple SAs | Containing regular semisimple SAs in which the sl(2) has no centralizer |
\(A^{110}_1\) | (2, 2, 2, 2, 2, 2) | (10, 18, 24, 28, 15, 15) | \(V_{18\psi}+V_{14\psi}+2V_{10\psi}+V_{6\psi}+V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 220 | 110 | D^{1}_6; | D^{1}_6; |
\(A^{62}_1\) | (2, 2, 2, 0, 2, 2) | (8, 14, 18, 20, 11, 11) | \(V_{14\psi}+2V_{10\psi}+V_{8\psi}+2V_{6\psi}+2V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 124 | 62 | D^{1}_6; | D^{1}_6; |
\(A^{60}_1\) | (2, 2, 2, 2, 0, 0) | (8, 14, 18, 20, 10, 10) | \(V_{14\psi}+V_{10\psi}+3V_{8\psi}+V_{6\psi}+V_{2\psi}+3V_{0}\)
| 3 | not computed | 120 | 60 | D^{1}_5; | D^{1}_5; |
\(A^{38}_1\) | (2, 0, 2, 0, 2, 2) | (6, 10, 14, 16, 9, 9) | \(2V_{10\psi}+V_{8\psi}+3V_{6\psi}+V_{4\psi}+3V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 76 | 38 | D^{1}_6; | D^{1}_6; |
\(A^{35}_1\) | (0, 2, 0, 2, 2, 0) | (5, 10, 13, 16, 9, 8) | \(V_{10\psi}+3V_{8\psi}+V_{6\psi}+3V_{4\psi}+V_{2\psi}+3V_{0}\)
| 3 | not computed | 70 | 35 | A^{1}_5; | A^{1}_5; |
\(A^{30}_1\) | (2, 2, 0, 2, 0, 0) | (6, 10, 12, 14, 7, 7) | \(V_{10\psi}+V_{8\psi}+4V_{6\psi}+V_{4\psi}+4V_{2\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 60 | 30 | D^{1}_4+2A^{1}_1; D^{1}_5; | D^{1}_4+2A^{1}_1; D^{1}_5; |
\(A^{29}_1\) | (2, 2, 1, 0, 1, 1) | (6, 10, 12, 13, 7, 7) | \(V_{10\psi}+2V_{7\psi}+2V_{6\psi}+2V_{5\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}\)
| 3 | \(\displaystyle A^{1}_1\) | 58 | 29 | D^{1}_4+A^{1}_1; | D^{1}_4+A^{1}_1; |
\(A^{28}_1\) | (2, 2, 2, 0, 0, 0) | (6, 10, 12, 12, 6, 6) | \(V_{10\psi}+6V_{6\psi}+V_{2\psi}+10V_{0}\)
| 10 | not computed | 56 | 28 | D^{1}_4; | D^{1}_4; |
\(A^{20}_1\) | (0, 2, 0, 2, 0, 0) | (4, 8, 10, 12, 6, 6) | \(V_{8\psi}+3V_{6\psi}+5V_{4\psi}+3V_{2\psi}+2V_{0}\)
| 2 | \(\displaystyle 0\) | 40 | 20 | 2A^{1}_3; A^{1}_4; | 2A^{1}_3; A^{1}_4; |
\(A^{14}_1\) | (2, 0, 0, 2, 0, 0) | (4, 6, 8, 10, 5, 5) | \(3V_{6\psi}+4V_{4\psi}+8V_{2\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 28 | 14 | D^{1}_4+2A^{1}_1; A^{1}_3+A^{1}_2; | D^{1}_4+2A^{1}_1; A^{1}_3+A^{1}_2; |
\(A^{13}_1\) | (2, 0, 1, 0, 1, 1) | (4, 6, 8, 9, 5, 5) | \(2V_{6\psi}+2V_{5\psi}+V_{4\psi}+4V_{3\psi}+4V_{2\psi}+2V_{\psi}+3V_{0}\)
| 3 | \(\displaystyle A^{1}_1\) | 26 | 13 | D^{1}_4+A^{1}_1; | D^{1}_4+A^{1}_1; |
\(A^{12}_1\) | (0, 1, 1, 0, 1, 1) | (3, 6, 8, 9, 5, 5) | \(V_{6\psi}+2V_{5\psi}+3V_{4\psi}+4V_{3\psi}+3V_{2\psi}+2V_{\psi}+3V_{0}\)
| 3 | not computed | 24 | 12 | A^{1}_3+2A^{1}_1; | A^{1}_3+2A^{1}_1; |
\(A^{12}_1\) | (2, 0, 2, 0, 0, 0) | (4, 6, 8, 8, 4, 4) | \(2V_{6\psi}+5V_{4\psi}+7V_{2\psi}+6V_{0}\)
| 6 | \(\displaystyle 2A^{1}_1\) | 24 | 12 | A^{1}_3+2A^{1}_1; D^{1}_4; | A^{1}_3+2A^{1}_1; D^{1}_4; |
\(A^{11}_1\) | (0, 2, 0, 0, 0, 2) | (3, 6, 7, 8, 4, 5) | \(V_{6\psi}+7V_{4\psi}+6V_{2\psi}+6V_{0}\)
| 6 | not computed | 22 | 11 | A^{1}_3+A^{1}_1; | A^{1}_3+A^{1}_1; |
\(A^{11}_1\) | (2, 1, 0, 1, 0, 0) | (4, 6, 7, 8, 4, 4) | \(V_{6\psi}+2V_{5\psi}+3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+6V_{\psi}+6V_{0}\)
| 6 | not computed | 22 | 11 | A^{1}_3+A^{1}_1; | A^{1}_3+A^{1}_1; |
\(A^{10}_1\) | (2, 2, 0, 0, 0, 0) | (4, 6, 6, 6, 3, 3) | \(V_{6\psi}+7V_{4\psi}+V_{2\psi}+21V_{0}\)
| 21 | not computed | 20 | 10 | A^{1}_3; | A^{1}_3; |
\(A^{10}_1\) | (0, 2, 0, 1, 0, 0) | (3, 6, 7, 8, 4, 4) | \(V_{6\psi}+3V_{4\psi}+8V_{3\psi}+V_{2\psi}+9V_{0}\)
| 9 | not computed | 20 | 10 | A^{1}_3; | A^{1}_3; |
\(A^{8}_1\) | (0, 0, 0, 2, 0, 0) | (2, 4, 6, 8, 4, 4) | \(6V_{4\psi}+10V_{2\psi}+6V_{0}\)
| 6 | not computed | 16 | 8 | 2A^{1}_2; | 2A^{1}_2; |
\(A^{6}_1\) | (0, 0, 2, 0, 0, 0) | (2, 4, 6, 6, 3, 3) | \(3V_{4\psi}+15V_{2\psi}+6V_{0}\)
| 6 | not computed | 12 | 6 | 6A^{1}_1; A^{1}_2+2A^{1}_1; | 6A^{1}_1; A^{1}_2+2A^{1}_1; |
\(A^{5}_1\) | (0, 1, 0, 1, 0, 0) | (2, 4, 5, 6, 3, 3) | \(V_{4\psi}+4V_{3\psi}+8V_{2\psi}+8V_{\psi}+5V_{0}\)
| 5 | \(\displaystyle A^{1}_1\) | 10 | 5 | 5A^{1}_1; A^{1}_2+A^{1}_1; | 5A^{1}_1; A^{1}_2+A^{1}_1; |
\(A^{4}_1\) | (1, 0, 0, 0, 1, 1) | (2, 3, 4, 5, 3, 3) | \(4V_{3\psi}+8V_{2\psi}+8V_{\psi}+10V_{0}\)
| 10 | not computed | 8 | 4 | 4A^{1}_1; | 4A^{1}_1; |
\(A^{4}_1\) | (0, 2, 0, 0, 0, 0) | (2, 4, 4, 4, 2, 2) | \(V_{4\psi}+15V_{2\psi}+16V_{0}\)
| 16 | \(\displaystyle A^{1}_3\) | 8 | 4 | 4A^{1}_1; A^{1}_2; | 4A^{1}_1; A^{1}_2; |
\(A^{3}_1\) | (0, 0, 0, 0, 2, 0) | (1, 2, 3, 4, 3, 2) | \(15V_{2\psi}+21V_{0}\)
| 21 | not computed | 6 | 3 | 3A^{1}_1; | 3A^{1}_1; |
\(A^{3}_1\) | (1, 0, 1, 0, 0, 0) | (2, 3, 4, 4, 2, 2) | \(2V_{3\psi}+7V_{2\psi}+12V_{\psi}+13V_{0}\)
| 13 | not computed | 6 | 3 | 3A^{1}_1; | 3A^{1}_1; |
\(A^{2}_1\) | (2, 0, 0, 0, 0, 0) | (2, 2, 2, 2, 1, 1) | \(10V_{2\psi}+36V_{0}\)
| 36 | not computed | 4 | 2 | 2A^{1}_1; | 2A^{1}_1; |
\(A^{2}_1\) | (0, 0, 0, 1, 0, 0) | (1, 2, 3, 4, 2, 2) | \(6V_{2\psi}+16V_{\psi}+16V_{0}\)
| 16 | not computed | 4 | 2 | 2A^{1}_1; | 2A^{1}_1; |
\(A^{1}_1\) | (0, 1, 0, 0, 0, 0) | (1, 2, 2, 2, 1, 1) | \(V_{2\psi}+16V_{\psi}+31V_{0}\)
| 31 | \(\displaystyle D^{1}_4+A^{1}_1\) | 2 | 1 | A^{1}_1; | A^{1}_1; |